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Abstract: The paper focuses on the control problem of a tentacle robot that performs the 
coil function of the grasping. First, the dynamic model of a tentacle arm with continuum 
elements produced by flexible composite materials in conjunction with active-
controllable electro-rheological fluids is analyzed. Secondly, both problems, i.e. the 
position control and the force control are approached. The difficulties determined by the 
complexity of the non-linear integral-differential equations are avoided by using a very 
basic energy relationship of this system. Energy-based control laws are introduced for the 
position control problem. A force control method is proposed, namely the DSMC method 
in which the evolution of the system on the switching line by the ER fluid viscosity is 
controlled. Numerical simulation is also presented. 
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1. INTRODUCTION 

 
A tentacle robot is a hyper-degree-of-freedom 
(HDOF) manipulator and there has been a rapidly 
expanding interest in its study and construction 
lately. The control of these systems is very complex. 
In (Hemami, 1984), the control by cables or tendons 
designed to transmit forces to the elements of the arm 
in order to closely approximate the arm as a truly 
continuous backbone was analyzed. Gravagne 
(Gravagne and Walker, 2000) analyzed the 
kinematical model of “hyper-redundant” robots, 
known as “continuum” robots. Important results were 
obtained by Chirikjian and Burdick (Chirikjian and. 
Burdick, 1990, 1992, 1993, 1995) which laid the 
foundations for the kinematical theory of hyper-
redundant robots. Mochiyama has also investigated 
the problem of controlling the shape of an HDOF 
rigid-link robot with two-degree-of-freedom joints 
using spatial curves (Mochiyama et al., 1998, 1999). 
In (Robinson and Davies, 1999, Suzumori et al., 
1991), the “state of art” of continuum robots are 
presented. In other papers (Singh and Popa, 1993, 
Ivanescu and Stoian, 1995), several technological 

solutions for actuators used in hyper-redundant 
structures are presented and conventional control 
systems are introduced. Another paper (Chiaverini 
and Siciliano, 1990) proposes a dynamic model for 
hyper-redundant structures such as an infinite degree-
of-freedom continuum model and some computed 
torque control systems are introduced. In (Ge et al., 
1996), a dynamic model for an ideal planar tentacle 
system is presented and optimal control solutions are 
discussed. The difficulty of the dynamic control lies 
in the determined by integral-partial-differential 
models with high nonlinearities that characterize the 
dynamics of these systems. In (Ivanescu, 2002), the 
dynamic model for 3D space is inferred and a control 
law based on the energy of the system is analyzed. 
 
In this paper, the problem of a class of tentacle arms 
with continuum elements that performs the grasping 
function by coiling is discussed. First, the dynamic 
model of the system is inferred. The difficulties 
determined by the complexity of the non-linear 
integral-differential equations, which represent the 
dynamic model of the system, are avoided by using a 
basic energy relationship of this system. Energy-



based control laws are introduced for the position 
control problem. A force control method is proposed, 
namely the DSMC (Direct Sliding Mode Control) 
method, the evolution of the system on the switching 
line by ER fluid viscosity control. 
 
 

2. BACKGROUND 
 
2.1. Technological model 
 
The paper studies a class of tentacle arms that can 
achieve any position and orientation in 3D space, and 
can perform a coil function for the grasping (Fig. 1). 
 
 
 
 
 
 

 
Fig. 1. The tentacle grasping arm 
 
Technologically, these arms are based on the use of 
flexible composite materials in conjunction with 
active controllable electro-rheological (ER) fluids 
that can change their mechanical characteristics in 
the presence of electrical fields. The general form of 
the arm is shown in Fig. 2. It consists of a number 
(N) of elements, cylinders made of fiber-reinforced 
rubber. There are four internal chambers in the 
cylinder, each of them containing the ER fluid with 
an individual control circuit. The last m elements 
( )Nm <  represent the grasping terminal. These 
elements contain a number of force sensors 
distributed on the surface of the cylinders. These 
sensors measure the contact with the load and ensure 
the distributed force control during the grasping. The 
sensor network is constituted by a number of 
impedance devices (see Fig. 3) that define the 
dynamic relationship between the grasping element 
displacement and the contact force. 
 
 
 
 
 
 
 
 
 
Fig. 2. The force sensors 

distribution 
Fig. 3. The cylinder 

structure 
 
2.2. Theoretical model 
 
The essence of the tentacle model is a 3-dimensional 
backbone curve C that is parametrically described by 
a vector ( ) 3Rsr ∈  and an associated frame 

( ) 33×∈ Rsφ  whose columns create the frame bases 
(Fig. 4). The independent parameter s is related to the 

arc-length from the origin of the curve C, 
[ ]Ls ,0∈ , where: 

 ∑
=

=
N

i
ilL

1

 (1) 

where il  represent the length of the elements i of the 
arm in the initial position. 
The position of a point s on curve C is defined by the 
position vector: 

 ( )srr = , [ ]ls ,0∈  (2) 

For a dynamic motion, the time variable will be 
introduced, ( )tsrr ,= . We used a parameterization 
of the curve C based upon two “continuous angles” 

( )sθ   and ( )sq  [3-6] and the length variable u 
(Figure 4). At each point ( )tsr , , the robot’s 
orientation is given by a right-handed orthonormal 
basis vector { }zyx eee ,,  and its origin coincides 

with point ( )tsrr ,= . The position vector on curve C 
is given by: 

 ( ) ( ) ( ) ( )[ ]Ttsztsytsxtsr ,,,, =  (3) 

where the three parameters that appear in the relation 

(3) are as follows: ( ) ( ) ( )∫ ′′′=
S

sdtsqtstsx
0

,cos,sin, θ , 

( ) ( ) ( )∫ ′′′=
S

sdtsqtstsy
0

,cos,cos, θ , ( ) ( )∫ ′′=
S

sdtsqtsz
0

,sin, , 

with [ ]ss ,0∈′ . 

 
Fig. 4. (a) The backbone structure; (b) The backbone 

parameters 
 
We can adopt the following interpretation [2, 6]: at 
any point s, the parameters ( )tsx , , ( )tsy ,  and ( )tsz ,  
determine the current position and ( )sφ  determines 
the robot’s orientation. The robot’s shape is defined 
by the behaviour of functions ( )sθ  and ( )sq . The 
robot “grows” from the origin by integrating to get 

( )tsr , , [ ]ls ,0∈ . The velocity components are 
obtained by deriving the corresponding parameter of 
the robot movement [16]. For an element dm, where 

dsdm ⋅= ρ , the kinetic and gravitational potential 
energy will be: 
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From (7) and (8), we obtain: 
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 ∫ ∫ ′′=
l s

dssdqgV
0 0

sinρ  (10) 

 

The elastic potential energy will be approximated by 
the bending of the element [10]: 

 ( )∑
=

+=
N

i
iieb qdkV

1

22
2

4
θ  (11) 

We assumed that each element has a constant 
curvature and a uniform equivalent elasticity 
coefficient k (constant on all the length of the arm). 
We shall consider ( )tsF ,θ , ( )tsFq ,  the distributed 
forces on the arm length that determine motion and 
orientation in the θ - and q -plane. From [14], the 
mechanical work is: 

 ( ) ( ) ( ) ( )( )∫ ∫ +=
l t

q dsdsqsFssFL
0 0

,,,, ττττθτθ && (12) 

where ( ) ( )ts
t

ts ,,
∂
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=
θθ&  and ( ) ( )ts

t
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∂
∂

=& . 

The energy-work relationship will be 

 

( ) ( )[ ] ( ) ( )[ ]
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00
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where ( )tT , ( )0T and ( )tV , ( )0V  are the total kinetic 
energy and total potential energy of the system at the 
time t and 0, respectively. 
 
 

3. DYNAMIC MODEL 
 
The robot model is considered a distributed 
parameter system defined on a variable spatial 
domain [ ]L,0=Ω  and the spatial coordinate s. The 
dynamic model is derived by using Lagrange 
equations: 
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where ( )⋅∂∂ , ( )⋅δδ  denote the classical and 
functional partial derivatives. From (9), (10), (11), 
the distributed parameter model becomes, 
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where we used the notations: ( ) ttsqq ∂′∂=′ ,& , 

( ) 22 , ttsqq ∂′∂=′&& , ( )tsFF qq ,= , [ ]Ls ,0∈ , 

[ ]ss ,0∈′ . 
The state of this system at any fixed time t is 
specified by the set ( ) ( )( )stst ,,, νω , where 

[ ]Tqθω =  represents the generalized coordinates 
and ν  defines the momentum densities. The set of all 
functions Ω∈s  that ω , ν  can take on at any time is 
the state function space ( )ΩΓ . We shall assume that 

( ) ( )Ω⊂ΩΓ 2L . 
The control forces have the distributed components 
along the arm, ( )tsF ,θ , ( )tsFq , , [ ]Ls ,0∈  that are 
determined by the lumped torques, 

 ( ) ( ) ( )∑
=

−=
N

i

tilstsF
i

1

, θθ τδ  (18) 

 ( ) ( ) ( )∑
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i
qq tilstsF

i
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, τδ  (19) 

where δ  is Kronecker delta, llll N ==== K21 , 
and 

 ( ) ( ) 821 dSppt
iii

⋅−= θθθτ  (20) 

 ( ) ( ) 821 dSppt
iii qqq ⋅−=τ , Ni ,,2,1 K=  (21) 

In (20), (21), 1
i

pθ , 2
i

pθ , 1
iqp , 2

iqp  represent the fluid 
pressure in the two chamber pairs, θ , q  and S, d are 



section area and the diameter of the cylinder, 
respectively (Fig. 5). 
 
 
 
 
 
 
 
 
 
 
Fig. 5. The cylinder driving 
 
The pressure control of the chambers is described by 
the equations: 

 ( ) ki

k
i

ki u
dt

dp
a θ

θθ =  (22) 

 ( ) qki

k
qi

ki u
dt

dp
qb = , 2,1=k ; Ni ,,2,1 K=  (23) 

where kia , kib  are the coefficients determined by 
the fluid parameters and the geometry of the 
chambers and ( ) 00 >kia , ( ) 00 >kib , ( )ΩΓ∈q,θ . 
 
 

4. CONTROL PROBLEM 
 
The tentacle arm control problem of a grasping 
function by coiling is generated from two 
subproblems: the position control of the arm around 
the object-load and the force control of grasping. 
 
 
4.1. Position control 
 
We consider that the initial state of the system is 
given by 

 ( ) [ ]Tqs 000 ,,0 θωω ==  (24) 

 ( ) [ ]Ts 0,0,00 ==νν  (25) 

where ( )s,00 θθ = , ( )sqq ,00 = , [ ]Ls ,0∈ , 
corresponding to the initial position of the arm 
defined by the curve 0C  

 ( ) ( )( )sqsC 000 ,: θ , [ ]Ls ,0∈  (26) 

The desired point in ( )ΩΓ  is represent by a desired 
position of the arm, the curve dC  that coils the load, 

 [ ]Tddd q,θω = , [ ]Td 0,0=ν  (27) 

 ( ) ( )( )sqsC ddd ,: θ , [ ]Ls ,0∈  (28) 

In a grasping function by coiling, only the last m 
elements ( )Nm <  are used. Let gl  be the active 
grasping length, 

 ∑
=

=
n

mi
ig ll  (29) 

Let bC  be the curve defines the boundary of the load 
and we denote by bO  the origin of the coiling 
function, when bO  is the intersection between the 
tangent from origin O and the curve LC  (Figure 6.b). 
This curve can be expressed using the coordinates 
( ) ( )ΩΓ∈q,θ . 

 ( ) ( )( )∗∗ sqsC bbb ,: θ , [ ]bLs ,0∈∗  (30) 

where bL  is the length of the coiling measured on the 

boundary bC  and ∗+−= slLs g . 
 
 
 
 
 
 
 
 
 
Fig. 6. (a) The grasping position; (b) The grasping 

parameters 
 
We define the position error by ( )te p  

 ( ) ( ) ( )( ) ( ) ( )( )( )∫
−

−+−=
L

lL
bbp

g

dssqtsqstste ,, θθ (31) 

 

It is difficult to measure practically the angles θ , q  
for all [ ]Ls ,0∈ . These angles can be evaluated or 
measured at the terminal point of each element. In 
this case, the relation (31) becomes 

 ( ) ( )( ) ( )( )( )∑
=

−+−=
N

mi
biibiip qtqtte θθ  (32) 

The error can also be expressed with respect to the 
global desired position dC  

 ( ) ( )( ) ( )( )( )∑
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i
diidiip qtqtte

1
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The position control of the arm means the motion 
control from the initial position 0C  to the desired 
position bC  in order to minimize the error. 
Theorem 1. The closed-loop control system of the 
position (16), (17), (22), (23) is stable if the fluid 
pressure control laws in the chambers of the elements 
are given by: 
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ijiji θθθθθ θ &&& 21 +−=  (35) 
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where 2,1=j ; Ni ,,2,1 K= , with initial conditions: 

 ( ) ( ) ( ) ( )000 211121
iiiii ekkpp θθθθθ −=−  (37) 

 ( ) ( ) ( ) ( )000 211121
qiqiqiqiqi ekkpp −=−  (38) 

 ( ) 00 =ieθ& , ( ) 00 =qie&  (39) 

and the coefficients ikθ , qik , mn
ikθ , mn

qik  are positive 
and verify the conditions 

 ( )2111

8 iii kkSdk θθθ −= , ( )2111

8 qiqiqi kkSdk −=  (40) 

 2111
ii kk θθ > ; 2212

ii kk θθ > ; 2111
qiqi kk > ; 2212

qiqi kk > (41) 

 

 

4.2. Force control 
 
The grasping by coiling of the continuum terminal 
elements offers a very good solution to remove the 
uncertainty connected to the geometry of the contact 
surface. The contact between an element and the load 
is presented in Fig. 7. It is assumed that the grasping 
is determined by the chambers in the θ -plane. 
 
 
 
 
 
 
 

 
Fig. 7. The grasping force 
 
The relation between the fluid pressure and the 
grasping forces can be inferred for a steady state as: 
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and ( )sf  is the orthogonal force on the curve bC , 
( )sf  is ( )sFθ  in θ -plane and ( )sFq  in q-plane, 

respectively. 
 
A spatial discretization 121 ,,, lsss K  is introduced 
and ii ss −=Δ +1 , with ( )ii sθθ =  and 1,,2,1 li K= . 
For small variation iθΔ  around the desired position 

idθ , in θ -plane, the dynamic model (16) can be 
approximated by the following discrete model: 
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where Δ= Smi ρ , 1,,2,1 li K= , ( )did qH ,θ  is a 
nonlinear function defined on the desired position 
( )did q,θ , ( ) 0,, >= diii qcc θν , ( )ΩΓ∈q,θ , 
with ν  - the viscosity of the fluid in the chambers. 

 

( ) ( )

( ) ididii

qq

i

diddidiidi

qh
H

qHqH

d
d

θθθ
θ

θθθθ

θθ
Δ⋅=Δ

∂
∂

≅

≅−Δ+

=
=

,

,,,

(45) 

eiF  is the external force due to the load. 
 
The equation (44) becomes, 
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The aim of the explicit force control is to exert a 
desired force idF . If the contact with the load is 
modeled as a linear spring with constant stiffness Lk , 
the environment force can be modeled as: 

 iLei kF θΔ=  (47) 

The error of the force control may be introduced in 
the form of 

 idiefi FFe −=  (48) 

It may be easily shown that the equation (46) 
becomes 
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Theorem 2. The closed force control system is 
asymptotic stable if the control law is 

( ) ( )( )idiLifiiiLi
iL

i Fdkhemdkh
dk

f −−++= 21 σ  (50) 

 σii mc >  (51) 

In this paper, the force error control may be 
improved by using the Direct Sliding Mode Control. 
 
Proposition. The DSMC control is ensured if the 
coefficients ic  of the control system verify the 
conditions: 

 ( )Liiii kdhmc +> 42  (52) 

 
The condition (52) can be verified by increasing the 
ER fluid viscosity. The force control system is 
developed into two steps. In the first step, according 
to Theorem 2, the trajectory of the error is controlled 
by the force if . In the second, the fluid viscosity is 
increased and the trajectory switches directly toward 
the origin on the switching line. The block scheme of 
the force control is presented in Fig. 8.  
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Grasping 
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Fig. 8. The force control system 

 
 

5. SIMULATION 
 
A hyperredundant manipulator with eight elements is 
considered. The mechanical parameters are: linear 
density mkg2.2=ρ  and the length of one element 
is ml 05.0= . The initial position is the defined by 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ =

2
: 00

πθ sC . A discretisation for each element 

with an increment 3l=Δ  is introduced. 
 
A force control for the grasping terminals is 
simulated. The phase portrait of the force error is 
presented in Fig. 9. First, the control (26), (27) is 
used and then, when the trajectory penetrates the 
switching line the viscosity is increased for a 
damping coefficient 15.1=ξ . 
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Fig. 9. The force control phase portrait 

 
 

6. CONCLUSION 
 
The paper treats the control problem of a tentacle 
robot arm with continuum elements that performs the 
coil function of grasping. The structure of the arm is 
given by flexible composite materials in conjunction 
with active-controllable electro-rheological fluids. 
The dynamic model of the system is inferred by 
using Lagrange equations developed for infinite 
dimensional systems. 
 
The grasping problem comprises in two 
subproblems: the position control and the force 
control. The difficulties determined by the 
complexity of the non-linear integral-differential 
equations are avoided by using a very basic energy 
relationship of this system and energy-based control 
laws are introduced for the position control problem. 
The force control is obtained by using the DSMC 
method in which the evolution of the system on the 
switching line is controlled by the ER fluid viscosity. 
Numerical simulation is presented. 
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